\begin{tabbing} combine{-}ecl{-}tuples($A$; $B$; $f$; $g$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$spreadn(\=$A$;\+ \\[0ex]${\it Ta}$,${\it ksa}$,${\it ia}$,${\it ga}$,${\it ha}$,${\it aa}$,${\it ae}$.spreadn(\=$B$;\+ \\[0ex]${\it Tb}$,${\it ksb}$,${\it ib}$,${\it gb}$,${\it hb}$,${\it ab}$,${\it be}$.$<$:${\it Ta}$ $\times$ ${\it Tb}$ \\[0ex], append(${\it ksa}$; ${\it ksb}$) \\[0ex], $<$${\it ia}$, ${\it ib}$$>$ \\[0ex], $\lambda$${\it k'}$,$s$,$v$,$x$. $<$\=if deq{-}member(Kind{-}deq; ${\it k'}$; ${\it ksa}$)\+ \\[0ex]then ${\it ga}$(${\it k'}$,$s$,$v$,$x$.1) \\[0ex]else $x$.1 \\[0ex]fi \-\\[0ex], \=if band(\=deq{-}member(Kind{-}deq; ${\it k'}$; ${\it ksb}$);\+\+ \\[0ex](${\it ha}$(0,$x$.1))) \-\\[0ex]then ${\it gb}$(${\it k'}$,$s$,$v$,$x$.2) \\[0ex]else $x$.2 \\[0ex]fi \-\\[0ex]$>$ \\[0ex], $\lambda$$n$,$x$. $f$(($\lambda$$m$.${\it ha}$($m$,$x$.1)),$\lambda$$m$.${\it hb}$($m$,$x$.2),$n$) \\[0ex], $\lambda$$n$,${\it k'}$,$s$,$v$,$x$. \=$g$\+ \\[0ex](\=if deq{-}member(\=Kind{-}deq; ${\it k'}$; ${\it ksa}$\+\+ \\[0ex]) \-\\[0ex]then ${\it aa}$($n$,${\it k'}$,$s$,$v$,$x$.1) \\[0ex]else ff \\[0ex]fi \-\\[0ex],\=if deq{-}member(\=Kind{-}deq; ${\it k'}$; ${\it ksb}$\+\+ \\[0ex]) \-\\[0ex]then band(\=(${\it ha}$(0,$x$.1));\+ \\[0ex](${\it ab}$($n$,${\it k'}$,$s$,$v$,$x$.2))) \-\\[0ex]else ff \\[0ex]fi ) \-\-\\[0ex], merge(${\it ae}$; ${\it be}$)$>$)) \-\- \end{tabbing}